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Vampir – Tool Suite

• Help you with optimizing your parallel application

• Provides a view into the execution of the application

• More detailed view than profiling
(temporal and spatial dependencies etc.)

• Vampir does not fix your code
Vampir does not optimize your code
You are the expert – you draw the conclusions
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Motivation

• Why performance analysis?

– Efficient usage of limited resources

– Increase scalability for bigger simulations

• Profiling and Tracing

– Include optimization as a phase in your development

– Use tools instead of printf-solutions
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Profiling and Tracing

• Instrumentation

– Detect events (points of interest) during execution

– Handle that information in a measurement library

• Profiling

– Aggregates the available information

– Count the time spent in a function and sum it up

• Trace recording

– Save the individual event with a timestamp and 
processes/thread information
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Profiling and Tracing

• Tracing advantages

– Preserve the temporal and spatial relationships of events

– Profiles can be calculated from a trace but not vice versa

• Tracing disadvantages

– Traces can become very large

– More perturbation than just profiling

– Instrumentation and tracing is more complex 

• Larger I/O

• Event buffering

• Clock synchronization issues
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Common Event Types

• All Types have timestamp and process information

• Enter and leave of a function/region

– Region ID

• Send and receive of messages (MPI, GPU<->Host)

– Sender, receiver, size, tag, communicator

• Collective communication (MPI)
– Root, communicator, (size)

• Performance counter values (PAPI)

– Counter ID, value
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Vampir – Tool Suite

• The Vampir Performance Analysis Suite consists of

– VampirTrace: Collect trace data

– Vampir: The Graphical User Interface for trace analysis

– VampirServer: A parallel performance analysis engine
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VampirTrace

• VampirTrace consists of

– Trace library

– Compiler wrapper

– Tools to process trace files

• VampirTrace collects timestamped events

– No aggregation of data (by default)

– All information is preserved for analysis

– Trace files can become large and hard to handle

– VampirTrace uses two file handles / process, which is a 
difficult for LUSTRE to handle on large applications

• Work in progress to fix this
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VampirTrace

• VampirTrace supports the tracing of

– Function calls, using

• Compiler instrumentation

• Manual instrumentation (regions)

• Binary instrumentation (dyninst)

• Wrapping library calls

– MPI

• Point to point

• Collectives

• I/O

– Hardware Counters (PAPI)

– CUDA events

• Memory copy

• Kernel execution
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Vampir

• GUI to analyze trace files (OTF)

• Main concept: Timeline

• GUI is QT based – available on Linux, Mac, Windows
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VampirServer

• Parallel analysis engine for Vampir

– MPI

– OpenMP

• Scales to > 10,000 analysis processes

• Loads the entire uncompressed trace into memory
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Finding Performance Bottlenecks

• Inefficient Communication patterns

• Load imbalance / serial parts of the application

• Memory bound computation
– Inefficient cache usage

– TLB misses

– Use HW counters (PAPI) to detect

• I/O bottlenecks

• Most time consuming function
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Effects due to Tracing

• I/O overhead (flush)

– Visibly marked in the trace

– ‘Long‘ time for I/O

– Ideally only once at the end (invisible) or during barriers

– Avoid by applying runtime filters

• Measurement overhead
– Overhead on function calls

– Invisible

– Avoid instrumenting tiny frequently called functions

– Compare total runtime to get an upper bound on overhead
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Conclusion

• Performance analysis is very important in HPC

• Use the right tool for your needs

• Use tracing with caution

• Contact me for questions, problems or feature wishes
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Thank you

• Contact:

– Thomas Ilsche, ORNL
5700 B206
tt1@ornl.gov (Thomas.Ilsche@zih.tu-dresden.de)
865-241-6293

mailto:tt1@ornl.gov

